

Martensitic stainless steel for special plastic moulds that need high degree of resistance in aggressive environments

General characteristics

KeyLos[®] 2083 is an advanced martensitic stainless steel, Chromium based, for plastic moulds that need resistance to wear and corrosion.

KeyLos[®] 2083 is the ideal option if the following characteristics are simultaneously required:

- good hardness and wear resistance after heat treatment;
- soft corrosion resistance;
- homogeneous mechanical properties throughout the mould, up to 500 mm in thickness.

KeyLos[®] 2083 is obtained through a special 'super clean' manufacturing process.

This technology offers the following advantages:

- increase of material homogeneity;
- high micro-cleanness level;
- low segregation level.

Resistance to corrosion allows the surface characteristics of the mould to be maintained over time.

This means that the die can be stocked with no need for special precautions to be taken and with the certainty of being able to use the mould whenever needed.

The expensive and complicated operations of cleaning and setting up the die are not needed before usage.

KeyLos[®] 2083 is normally supplied in the annealed condition with surface hardness lower than 220 HB, in order to guarantee excellent machinability.

Upon request, KeyLos $^{\circledast}$ 2083 can be supplied in the prehardened condition with hardness 300-340 HB.

KeyLos® 2083 offers the following advantages:

- good machinability in annealed conditions (HB < 220);
- · good hardening stability and low distorsion;
- · good wear resistance;
- · good corrosion resistance;
- excellent polishability in hardened condition.

Constant development in processing technologies require the use of KeyLos[®] 2083, thanks to its high fatigue, wear and corrosion resistance, combined with its excellent dimensional stability and extremely low distortions.

KeyLos[®] 2083 represents one of the most important tough options, for highly resistant plastic moulds that need very high pressure strength, excellent resistance to abrasion and corrosion.

The increasing in the use of synthetic and abrasive materials has led manufacturers to use KeyLos[®] 2083 also when suitability for polishing and graining, combined with abrasion, corrosion and compression resistance, are required.

This grade is suitable for the production of moulds up to 500 mm in thickness subject to corrosive and abrasive actions due to aggressive polymers (PVC, recycled polymers, etc.) or to unfavorable atmospheric conditions (high humidity / salinity).

KeyLos[®] 2083 is 100% ultrasonically inspected, according to the most demanding of NDT standards.

KeyLos[®] 2083 is also designed with the aim to guarantee the minimum use of virgin materials, moving toward the use of scrap categories difficult to be recycled, that can became food for the steel making production of KeyLos[®] 2083 grade.

Chemical analysis

	Range	C [%]	Si [%]	Cr [%]	Mn [%]
KEY <u>o</u> s 2083	min	0,33	/	12,50	0,30
Alloying [% in weight]	max	0,43	1,00	13,50	0,60

Table for comparison of international classification

W. Nr.	1.2083
DIN EN ISO 4957	X42Cr13
AFNOR	Z40C14
AISI	420

Lucchini RS's tool steels have been researched and formulated in order to optimize the material performances.

The brand name identifies the Lucchini RS product and the number evokes the Werkstoff classification or other means of reflecting the characteristics of use.

Typical applications

KeyLos® 2083 is suitable for the following applications:

- moulds for corrosive plastic materials (PVC, recycled polymers, etc.);
- moulds for the automotive industry and optical parts (head lamp components);
- moulds for medical instruments;
- · moulds for food industry products;
- moulds for the cosmetics industry;
- moulds for rubber pressing;
- · dies and gauges for PVC extrusion;
- mechanical parts for extrusion presses (ex. extrusion heads).

Physical and mechanical properties

Main physical properties

KEY 05 2083	20°C	250°C	500°C
Modulus of elasticity [GPa] (1GPa=1000 MPa)	210	198	177
Coefficient of thermal expansion [10 ⁻⁶ /K]	-	11,5	12,1
Thermal conductivity [W/mK]	16,5	19,8	24,1

Main mechanical properties

Keyos 2083	20°C	200°C
Tensile strength (UTS) [MPa]	1.350	1.100
Yield stress (YS) [MPa]	1.200	980

These values are average values obtained on a sample which has been hardened at 980°C, quenched and tempered at 550 °C to achieve hardness of 42 HRc.

The content of this brochure is intended for information only and cannot be considered as binding in connection with the supply of material. All information, except for the cases of law, are strictly confidential and can only be disclosed with permission of Lucchini RS S.p.A.

Heat treatments

KeyLos[®] 2083 is supplied in the annealed condition with hardness lower than 220 HB, or in the pre-hardened condition.

We suggest applying the following parameters if a different hardness is required or if heat treatment is needed.

This information is only indicative and must be adapted, depending on the different heat treatment requirements, facilities employed and on the thickness of the bar.

Soft annealing

Suggested temperature	750 °C
Soaking time	60 min every 25 mm thickness
Cooling	Slow in the furnace at max 20 °C/h to 600 °C , then at room temperature

Soft annealing is useful to improve machinability. The obtained hardness is lower than 220 HB.

Stress Relieving

Suggested temperature	150 - 430 °C
Soaking time	60 min every 25 mm thickness
Cooling	Slow in the furnace at max 20 °C/h to 200 °C

The stress relieving temperature will be 50° C lower than the tempering temperature previously applied, but the range 450 - 550°C is not recommended, because of their possible embrittling effects.

Stress relieving is recommended where it is necessary to eliminate residual stresses induced by mechanical working or by a preceding heat treatment.

Hardening	
Pre heating	700 °C
Heating	50 °C/h max
Soaking time	60 min every 25 mm thickness
Austenising suggested temperature	980°C - 1.040°C
Heating	50 °C/h max
Soaking time	60 min every 25 mm thickness
Cooling	water, air, gas

We suggest to carry out hardening on material supplied in the annealed condition and tempering immediately afterwards.

We suggest to avoid the highest temperature of austenitization, because higher is the temperature of austenitization and higher becomes the retained austenite content, not total transformed in martensite during cooling.

In any case, a sub-zero cooling treatment (cryogenic cooling technology) is recommended, in order to reach Mf temperature, that represents the final temperature transformation.

KeyLos® 2083 / Rev.00 / 05.2019

LOOK BEYOND

The content of this brochure is intended for information only and cannot be considered as binding in connection with the supply of material. All information, except for the cases of law, are strictly confidential and can only be disclosed with permission of Lucchini RS S.p.A.

Tempering

Tempering repeated two times are recommended, in order to reduce the amount of retained austenite.

The suggested temperature of tempering should be outside the not recommended tempering range of 450 - 550°C (blu range), because of their possible embrittling effects.

Tempering curve of KeyLos[®] 2083 samples austenitised at different temperatures between 980°C and 1.040 °C.

The two optimum tempering temperatures are:

- 350°C: highest strength, high toughness;
- 600°C: moderate strength, high toughness.

If the not recommended tempering range cannot be avoided, in order to reach very high values of Hardness (around 50 HRC) on large section moulds, please consult Lucchini RS specialists.

A slightly secondary hardening effect is observed in the vicinity of 500°C after tempering, which can be attributed to the precipitation of Cr23C6 carbides heterogeneously distributed in the martensite matrix and that can lead to the loss of corrosion resistance of the steel.

KeyLos® 2083 / Rev.00 / 05.2019

CCT Curve

Microstructure of KEYLOS® 2083

ESKYLOS 2083 in annealed condition: Globular Pearlite with dispersed Carbides

ESKYLOS 2083 in hardening condition: Tempered Martensite with dispersed Carbides

KeyLos® 2083 / Rev.00 / 05.2019

6

LOOK BEYOND

The content of this brochure is intended for information only and cannot be considered as binding in connection with the supply of material. All information, except for the cases of law, are strictly confidential and can only be disclosed with permission of Lucchini RS S.p.A.

Quick comparison guide among the different grades

The following table shows a quick comparison among the most important characteristics of the annealed and pre-hardened grades normally applied in corrosion resistant plastic moulding.

Lucchini RS Mould steel Family for plastics Industry								
		Annealed Corrosion Resistant					Precipitation	n Hardening
Special features and delivered		KEYLOS			ESKYLOS	ESK	/LOS	
conditions	2083	2084	2085	2316	2316S	2083	4542	2001
HB in surface in Annealed condition	< 220	< 220	< 220	< 220	< 220	< 220	< 355	310 350
HB in surface Pre-hardened or Hardened after machining	400 450	400 450	400 450	400 450	400 450	400 450	300 400	350 450
Maximum thickness [mm]	500	500	500	500	500	500	500	500
Hardness and Wear Resistance	4	4	4	4	4	4	2	3
Degree of Through Hardening in the section	3	2	2	2	2	3	4	3
Toughness	2	1	1	2	1	2	2	2
Machinability after Annealing	2	3	3	2	3	2	2	3
Machinability after Hardening	1	2	2	1	2	1	1	1
Etch-Grainability	2	1	1	2	1	4	4	4
Polishability	2	1	1	2	1	3	3	3
Repair by Welding	1	0	0	1	0	1	2	1
Thermal Conductivity	1	1	1	1	1	1	1	1
Corrosion Resistance	2	2	2	2	2	2	1	0

The information and the data presented here are typical or average values and are not a guarantee of maximum or minimum values.

Applications specifically suggested for materials described herein and in the quick comparison guide among the different grades are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes.

Guidance for machining

The following parameters are indicative only and must be adapted to the particular application and to the machinery employed. The data refer to material in the annealed condition. Hardness 220 HB max.

Turning

	Rough machining		Finish machining	
Type of insert	P20-P40 coated	HSS	P10-P20 coated	Cermet
$V_{\rm c}$ cutting speed [m/min]	170 ÷ 220	(*)	200 ÷ 250	240 ÷ 300
a _r cutting depth [mm]	1 ÷ 5	(*)	< 1	< 0,5

Milling

		Rough machining	
Type of insert	P25-P35 not coated	P25-P35 coated	HSS
$\rm V_{c}$ cutting speed [m/min]	140 ÷ 200	180 ÷ 260	(*)
f_{z} feed [mm]	0,15 ÷ 0,3	0,15 ÷ 0,3	(*)
a _r cutting depth [mm]	2 ÷ 4	2 ÷ 4	(*)
		Pre-finishing	
Type of insert	P10-P20 not coated	P10-P20 coated	HSS
$\rm V_{c}$ cutting speed [m/min]	160 ÷ 240	240 ÷ 280	(*)
f_{z} feed [mm]	0,2 ÷ 0,3	0,2 ÷ 0,3	(*)
a _r cutting depth [mm]	1 ÷ 2	1 ÷ 2	(*)
		Finishing	
Type of insert	P10-P20 not coated	P10-P20 coated	Cermet P15
V_{c} cutting speed [m/min]	200 ÷ 260	240 ÷ 300	240 ÷ 330

 $0,05 \div 0,2$

0,5 ÷ 1

(*) not advisable

8

KeyLos® 2083 / Rev.00 / 05.2019

 f_7 feed [mm]

a, cutting depth [mm]

0,05 ÷ 0,2

 $0,3 \div 0,5$

0,05 ÷ 0,2

0,5 ÷ 1

Drilling

Type of insert	tip with interchangeable inserts	HSS	brazed tip
V_{c} cutting speed [m/min]	190 ÷ 220	(*)	60 ÷ 80
f_z feed per turn [mm/turn]	0,05 ÷ 0,15	(*)	0,15 ÷ 0,25

(*) not advisable

General formulae

Type of machining	Drilling	Milling
n: number of turns of mandrel	V_{c} * 1000 / π * D_{c}	V_{c} * 1000 / π * D_{c}
V _f : feed speed [m/min]	$V_f = f_z * n$	$V_f = f_z * n * z_n$
f_{z} feed per turn [mm/turn]	-	$f_n = V_f / n$
Note	D_c : Milling cutter or tip diameter [mm] V_c : cutting speed [m/min] f_z : feed [mm]	f_n : feed per turn [mm/turn] z_n : No. of milling cutter inserts

Approximate equivalent values between hardness and ultimate tensile strength.

HB	530	520	512	495	480	471	458	445	430	415	405	390	375
HRc	54	53	52	51,1	50,2	49,1	48,2	47	45,9	44,5	43,6	41,8	40,5
MPa	1.900	1.850	1.800	1.750	1.700	1.650	1.600	1.550	1.500	1.450	1.400	1.350	1.300
HB	360	350	330	320	305	294	284	265	252	238	225	209	195
HRc	38,8	37,6	35,5	34,2	32,4	31	29	27					
MPa	1.250	1.200	1.150	1.100	1.050	1.000	950	900	850	800	750	700	650

Repair welding

Welding on KEYLOS® 2083 is not recommended.

If it cannot be avoided, please consult Lucchini RS specialists.

The following information about welding procedure on $\mathsf{EskyLos}^{\circledast}$ 2083 is only indicative.

Welding technique	TIG	TIG				
Condition of material	Annealed	Hardened and tempered				
Pre-heating at	250÷300 ℃					
Recommended heat treatment	Heating at 680 °C and cooling at room temperature	Tempering at 10-20 °C below the temperature of the last tempering				

Photo-engraving

Thanks to modern production processes, KeyLos[®] 2083 is suitable for photo-engraving to obtain various patterns.

Polishing

KeyLos® 2083 is particularly suitable for polishing.

Electrical Discharge Machining (EDM)

 $KeyLos^{\circledast}$ 2083 can be machined by EDM to obtain complex shape.

Afterwards it is advisable to stress relieving the material.

Process and materials selection for product recyclability

According to the potential of steel recycling, Lucchini RS is adopting a strategy for environmental excellence in designing and manufacturing of its tool steel grades, putting ecoeffectiveness into practice.

The main adopted steps are:

- conducting an environmental assessment on processes and products, with the minimum use of virgin materials and non-renewable forms of energy;
- moving toward zero-waste manufacturing processes, considering that the ultimate destinity of a scrapped steel mould becomes food for the next steel making process, that is the "waste equals food" philosophy;
- conducting a life cycle assessment for-each product and process, minimizing the environmental cost of product and service over its entire life cycles, from creation to disposal, that is the "Cradle to Cradle" philosophy.

The content of this brochure is intended for information only and cannot be considered as binding in connection with the supply of material. All information, except for the cases of law, are strictly confidential and can only be disclosed with permission of Lucchini RS S.p.A.